European Research on BtL, thermochemical conversion and 'sustainable biodiesel'

The COMSYN (Compact Gasification and Synthesis process for Transport Fuels) Project aims at developping a new biomass-to-liquid (BTL) production concept that will reduce biofuel production cost up to 35% compared to alternative routes. This means < 0,80 €/l production cost for diesel. Duration: 2017 - 2021.


In Summer 2013, VTT TRC Finland published a 126pp study Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass. 20 individual BTL plant designs were evaluated based on their technical and economic performance.

In February 2013, a presentation on Status update of selected demonstration plants (thermochemical value chains) was made at EBTP SPM5.

BRISK is a €10.84M four-year initiative with €8.98M funded under EC FP7 (Ref: 284498). BRISK aims to develop a European Research Infrastructure for Thermochemical Biomass Conversion, supporting R&D on innovative processes to convert sustainable feedstocks (agricultural/forestry wastes and energy crops) into liquid, gaseous or solid fuels.

The €3.73m DIBANET project is being co-ordinated by Carbolea at the University of Limerick and is a response to the Energy 2008 Call - "Significant enhancement of the cooperation between key researchers & industries from the EU & Latin America in the field of biofuels". DIBANET stands for the "Development of Integrated Biomass Approaches NETwork" & the title of the Project is "The Production of Sustainable Diesel Miscible Biofuels from the Residues & Wastes of Europe & Latin America". There are 13 partners in the group, 6 from the EU & 7 from Latin America (LA). The total budget for the project is €3.7m. DIBANET will develop technologies to help towards eliminating the need for fossil diesel imports in the EU & LA by advancing the art in the production of ethyl-levulinate from organic wastes and residues. Ethyl levulinate (EL) is a novel diesel miscible biofuel (DMB) produced by esterifying ethanol with levulinic acid.

The Cutec institute Cutec operates a pilot plant to investigate the thermochemical conversion of different types of biomass to synthesis gas and the separation of elements of the biomass step-by-step via a hot gas filter, water-based scrubber, sulferox scrubber, etc.

Greasoline® technology converts oily and fatty raw and waste materials to hydrocarbon mixtures consisting of chemical substances occurring in fossil gasoline, kerosene and diesel fuels. These products may be used as fuels and fuel components but also as chemical raw materials. The procedure was developed at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen, Germany. The GREASOLINE project was supported under FP6. In contrast to biodiesel, the product is chemically identical with fossil fuels. [Source: Fraunhofer Instiute].

In 2009, a demonstration facility - The Dutch Biorefinery Initiative (DBI) - was initiated in the Port of Rotterdam by WUR and ECN with support from the Netherlands government. This included a 10 MWth entrained-flow gasification based syngas production platform for heat and power, base chemicals and BtL. Information on this project was included in the IEA Bioenergy Task 42 publication on Biorefineries